Generalized quandle polynomials

نویسنده

  • Sam Nelson
چکیده

We define a family of generalizations of the two-variable quandle polynomial. These polynomial invariants generalize in a natural way to eight-variable polynomial invariants of finite biquandles. We use these polynomials to define a family of link invariants which further generalize the quandle counting invariant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cocycle Knot Invariants from Quandle Modules and Generalized Quandle Cohomology

Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Graña. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are us...

متن کامل

Generalizations of Quandle Cocycle Invariants and Alexander Modules from Quandle Modules

Quandle cohomology theory was developed [5] to define invariants of classical knots and knotted surfaces in state-sum form, called quandle cocycle (knot) invariants. The quandle cohomology theory is a modification of rack cohomology theory which was defined in [11]. The cocycle knot invariants are analogous in their definitions to the Dijkgraaf-Witten invariants [8] of triangulated 3-manifolds ...

متن کامل

Knot Theory for Self-indexed Graphs

We introduce and study so-called self-indexed graphs. These are (oriented) finite graphs endowed with a map from the set of edges to the set of vertices. Such graphs naturally arise from classical knot and link diagrams. In fact, the graphs resulting from link diagrams have an additional structure, an integral flow. We call a self-indexed graph with integral flow a comte. The analogy with links...

متن کامل

Knot Colouring Polynomials

This article introduces a natural extension of colouring numbers of knots, called colouring polynomials, and studies their relationship to Yang-Baxter invariants and quandle 2-cocycle invariants. For a knot K in the 3-sphere let πK be the fundamental group of the knot complement S 3 rK, and let mK , lK ∈ πK be a meridian-longitude pair. Given a finite group G and an element x ∈ G we consider th...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008